Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations

نویسندگان

  • Liuqiang Zhong
  • Long Chen
  • Shi Shu
  • Gabriel Wittum
  • Jinchao Xu
چکیده

We consider a standard Adaptive Edge Finite Element Method (AEFEM) based on arbitrary order Nédélec edge elements, for three-dimensional indefinite time-harmonic Maxwell equations. We prove that the AEFEM gives a contraction for the sum of the energy error and the scaled error estimator, between two consecutive adaptive loops provided the initial mesh is fine enough. Using the geometric decay, we show that the AEFEM yields the best-possible decay rate of the error plus oscillation in terms of the number of degrees of freedom. The main technical contribution of the paper is in the establishment of a quasi-orthogonality and a localized a posteriori error estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge Element Methods for Maxwell's Equations with Strong Convergence for Gauss' Laws

In this paper we propose and investigate some edge element approximations for three Maxwell systems in three dimensions: the stationary Maxwell equations, the time-harmonic Maxwell equations and the time-dependent Maxwell equations. These approximations have three novel features. First, the resulting discrete edge element systems can be solved by some existing preconditioned solvers with optima...

متن کامل

Commuting Smoothed Projectors in Weighted Norms with an Application to Axisymmetric Maxwell Equations

We construct finite element projectors that can be applied to functions with low regularity. These projectors are continuous in a weighted norm arising naturally when modeling devices with axial symmetry. They have important commuting diagram properties needed for finite element analysis. As an application, we use the projectors to prove quasioptimal convergence for the edge finite element appr...

متن کامل

An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations

The time-harmonic Maxwell equations are considered in the lowfrequency case. A finite element domain decomposition approach is proposed for the numerical approximation of the exact solution. This leads to an iteration-by-subdomain procedure, which is proven to converge. The rate of convergence turns out to be independent of the mesh size, showing that the preconditioner implicitly defined by th...

متن کامل

Uniform Convergence of Local Multigrid Methods for the Time-harmonic Maxwell Equation

For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec's first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and...

متن کامل

An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities

We develop an adaptive edge finite element method based on reliable and efficient residual-based a posteriori error estimates for low-frequency time-harmonic Maxwell’s equations with singularities. The resulting discrete problem is solved by the multigrid preconditioned minimum residual iteration algorithm. We demonstrate the efficiency and robustness of the proposed method by extensive numeric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2012